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Abstract By employing the Pekeris-type approximation to deal with the centrifugal
term, we solve the Schrödinger equation with the Deng–Fan molecular potential for
all values of l (orbital angular momentum quantum number). Using the Nikiforov–
Uvarov (N–U) method, the approximate analytical bound state energy eigenvalues
and the corresponding wave functions are obtained. The results obtained are in good
agreement with those ones found in the literature. The bound state energy eigenvalues
for a set of diatomic molecules (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC,
ScN and ScF) corresponding to the Deng–Fan molecular potential for arbitrary values
of n and l quantum numbers are reported.

Keywords Schrödinger equation · Diatomic molecules · Deng–Fan molecular
potential · Pekeris-type approximation scheme · Nikiforov–Uvarov (N–U) method

1 Introduction

It is well known in non-relativistic quantum mechanics that the motions of the parti-
cles are completely described by the Schrödinger equation [1–10,13–40,50,51]. The
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analytical solutions of this equation with physical potentials play an important role in
the understanding of physical background of such a system [1–10,13–40,50,51]. This
is attributed to the fact that the wave functions associated with these problems contain
all the necessary information regarding the quantum systems under consideration.

Thus, in recent years, considerable efforts have been directed towards obtaining
the non-relativistic energy eigenvalues and the corresponding wave functions by solv-
ing the Schrödinger equation [1–5]. However, one of the major challenging tasks of
theoretical physics is to obtain the analytical solutions of some quantum mechanical
problems in the presence of the centrifugal term (l �= 0).

Molecular potentials in quantum mechanics are forms of potential energy functions
within which molecules can interact. They vary in nature and mostly depend on their
internuclear distance between their atoms. Any physical potential V (r) in such a
quantum molecular system has to behave properly at the limits of the coordinate.
i.e. Vr→0 (r) = ∞ and Vr→∞ (r) approaches a constant. For a stable molecule, the
potential has minimum at bond length re, i.e Vr→re (r) = 0 [6–12]. Thus, seeking
for the approximate analytical solutions of the Schrödinger equation associated with
these forms of potentials is essential.

Some quantum molecular systems have been solved analytically by adopting dif-
ferent methods, these include: pseudoharmonic potential [13–15], Kratzer potential
[16–20]. Some of these quantum molecular potentials exist in the form of the two-,
three-, four-, and five-parameter potential functions [21].

However, it is not possible to obtain analytical solutions of some of these problems
due to the presence of the centrifugal barrier term. For such problems to be solvable,
we resort to the use of one of the approximation schemes to deal with this centrifu-
gal term [22]. One of such schemes is the Pekeris-type approximation introduced
by Pekeris [22], also, for a short-range potential, Greene and Aldrich in 1976 pro-
posed a similar approximation [23]. The proposed approximation was used to study
arbitrary l-states pseudo-Hulthén wave functions by using variational trial functions
[23].

Moreover, some quantum molecular systems have been solved by applying an
improved approximation scheme to the centrifugal term, the approximate analytical
solutions to some of these potential models have been obtained by using different meth-
ods. These methods include: Nikiforov–Uvarov (N–U) method [19,24–27], Hypergeo-
metric function [3]. Other methods are: asymptotic iteration method [28], Factorization
method [15,20], Pseudo-perturbative shifted l-expansion techniques [29].

Other examples that have been investigated so far are: the two-point quasi-rational
approximation technique [30], the tridiagonal J-matrix representation [31], exact quan-
tization rule [32,33], supersymmetry [7,21,34,35], variational method and supersym-
metric quantum mechanics [36].

In the list of these molecular potentials, the Morse potential is one of the most
useful models in many different fields of physics such as molecular physics, solid
state physics and chemical physics [5]. However, irrespective of the fact that the Morse
Potential is a typical anharmonic potential and it has been the subject of interest since
it was proposed by Morse [37]. It is also worth noting that as bond length approaches
zero, the Morse potential goes to a large value, whereas an ideal potential should
approach infinity. This shortcoming of the Morse Potential is attributed to the small
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but non-zero wave functions for bound vibrational states as the bond length approaches
zero [6].

In an attempt to overcome this shortcoming, the Morse potential is modified in
several ways. These modified Morse potentials have more parameters than the usual
Morse potential itself and lead to better agreement with experiment, but do not have
correct behaviour at r = 0 [6]. With this modification, a modified form was intro-
duced by Deng and Fan [8]. The Deng–Fan exponential—type potential is a simple
modified Morse potential, sometimes, called generalized Morse potential [8]. This
has been proposed in an attempt of finding a more suitable diatomic potential to
describe the vibrational spectrum [3]. It is qualitatively similar to the Morse poten-
tial but has the correct asymptotic behaviour as the internuclear distance approaches
zero [6].

The Deng–Fan molecular potential for a diatomic molecule was proposed by Deng
and Fan [8] as

V (r) = De

[
1 − b

ear − 1

]2

, b = eare − 1, r∀[0,∞) (1)

where De is the dissociation energy, re is the equilibrium inter-nuclear distance, a is
the range of the potential well and b is the position of minimum re. It is worth noting
that this molecular potential has correct physical boundary conditions at the origin
and at infinity [3,6–12,38,39].

The analytical expressions for the energy eigenvalues and the wave functions for
l = 0 state have been obtained by Deng and Fan [8]. In an attempt of solving this
molecular potential, some of the following methods have been used: functional analysis
method [3,6,9]. In 2011, Ikhdair obtained the approximate analytical solutions with
this potential for the Dirac equation with spin and pseudospin symmetry conditions
by using a new improved approximation scheme (Pekeris-type) with the Nikiforov–
Uvarov method [26].

The approximate bound state solutions of the pseudospin and spin symmetric Dirac
equation with the generalized Morse potential has been obtained by using an improved
approximation scheme to deal with the centrifugal (pseudo-centrifugal) term, this has
been done by employing the basic concept of the supersymmetric shape invariance
formalism [40]. In the same way, Zhang et al. [7] used the basic concept of the super-
symmetric shape invariance formalism and functional analysis method to obtain the
approximate solutions of the generalized Morse potential model including the cen-
trifugal term.

Recently, the bound state solutions of the Klein–Gordon and Dirac equations of
the Deng–Fan potential have been obtained by using the functional analysis method
for l �= 0 [38], the Nikiforov–Uvarov method for l �= 0 [11] and for l = 0 [12].
By using a proper approximation scheme to the centrifugal term, Wei and Chen [39]
obtained the l-wave continuum states of the Schrödinger equation for the modified
Morse potential. In their work, they obtained the normalized analytical wave functions
and the corresponding phase shifts. Also, it has been shown that the energy levels of
the continuum states reduce to those of the bound states at the poles of the scattering
amplitude [39].

123



J Math Chem (2013) 51:976–991 979

This potential has been used to describe diatomic molecular energy spectra and
electromagnetic transitions and it is an ideal internuclear potential in diatomic mole-
cules with the same behaviour for r → 0 [10]. The comparison between the Deng–Fan
and Morse molecular potentials have been studied by various authors [6,9].

Furthermore, the interest in the Deng–Fan molecular potential is due to its sig-
nificant applications in the study of the diatomic molecules in the field of molecular
physics [3,6,7].

In this work, our focus is to obtain the approximate analytical solutions of the
Schrödinger equations for the Deng–Fan molecular potential with the Pekeris-type
approximation using the Nikiforov–Uvarov (N–U) method. The successful applica-
tions of the results obtained are used to find the bound state energy eigenvalues for a
set of diatomic molecules (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN
and ScF) for arbitrary values of n and l quantum numbers.

The work is organized as follows, in Sect. 2, we review the Nikiforov–Uvarov
method. In Sect. 3, the Schrödinger equation is solved by using the Nikiforov–Uvarov
method with the non-zero angular momentum quantum numbers for the Deng–Fan
molecular potential. Section 4 contains the applications of the results. In Sect. 5, the
conclusion is given.

2 Overview of the Nikiforov–Uvarov (N–U) method

This method has been successfully applied to mathematical, nuclear and chemical
physics as well [11,12,19,24–27,41–47,51]. The Nikiforov–Uvarov (N–U) method
reduces the second order linear differential equation to generalized equation of hyper-
geometric type [43]. With an appropriate coordinate transformation s = s (r) , the
equation take the form

Ψ ′′ (s)+ τ̄ (s)

σ (s)
Ψ ′ (s)+ σ̄ (s)

σ 2 (s)
Ψ (s) = 0, (2)

where σ(s) and σ̄ (s) are polynomials, at most second degree and τ̄ (s) is a first degree
polynomials.

By taking the following factorization

Ψ (s) = φ (s) y(s), (3)

Equation (1) reduces to the hypergeometric type equation of the form [43]

σ (s) y′′ (s)+ τ (s) y′ (s)+ λy (s) = 0, (4)

where

τ (s) = τ̄ (s)+ 2π(s), (5)
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satisfies the condition τ ′(s) < 0, which will have a negative derivative is related to
the function φ(s) by

π (s) = σ(s)
d

ds
[ln φ(s)] . (6)

The parameter λ is defined by

λ = λn = −nτ ′ (s)−
[

n (n − 1)

2
σ ′′

]
; (n = 0, 1, 2, . . .) , (7)

the energy eigenvalues can be calculated from Eq. (7). In order to calculate the energy
eigenvalues, we need first, to determine λ by using the first derivative of π (s) and
defining

K = λ− π ′ (s) . (8)

By solving the resulting quadratic equation for π (s), we obtain the following expres-
sion

π (s) =
(
σ ′ − τ̄

2

)
±

√(
σ ′ − τ̄

2

)2

− σ̄ + kσ . (9)

Here, π (s) is a polynomial with the parameter s and the prime denote the first
derivative of the functions σ(s) and τ(s), respectively. The determination of k is
the essential point in the calculation of π (s) . It is simply defined by setting the
discriminant of the square root to zero [43], therefore, a general quadratic expression
for k can be obtained. The wave function φ(s) in relation in Eq. (3) satisfies the
condition

φ′(s)
φ(s)

= π (s)

σ (s)
, (10)

can now be determined and using the Rodrigues’ relation. The polynomial solutions
yn(s) are given by

yn (s) = Bn

ρ(s)

dn

dsn

[
σ n (s) ρ(s)

]
, (11)

where Bn is a normalization constant and the weight function ρ(s) satisfies the fol-
lowing relation

d

ds
[σ (s) ρ(s)] = τ (s) ρ(s). (12)
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3 Any l-State solutions of the Schrödinger equation

3.1 Separation of variables for the Schrödinger equation with the Deng–Fan
molecular potential

The Schrödinger equation for motion of a particle with the reduced mass µ in the
spherical symmetric potential described by the spherical coordinates is given by:

− h̄2

2μ

[
∂2

∂r2 + 2

r

∂

∂r
+ 1

r2

(
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sin2θ

∂2

∂φ2

)
+V (r)

]
Ψnlm (r, θ, φ)

= EnlΨnlm (r, θ, φ) . (13)

By considering the solution of the form

ψnlm (r, θ, φ) = Unl (r)Ylm (θ, φ) , (14)

we obtain the radial part of Schrodinger equation as:

(
∂2

∂r2 + 2

r

∂

∂r

)
Unl (r)− 2μ

h̄2

[
V (r)+ l (l + 1) h̄2

2μr2

]
Unl (r)+ 2μEnl

h̄2 Unl (r) = 0,

(15)

where the relationship between the effective potential Vef f (r) and the centrifugal term
Ṽl is defined as

Vef f (r) = V (r)+ Ṽl = V (r)+ l (l + 1) h̄2

2μr2 . (16)

By substituting of Unl (r) = Rnl (r)
r , we have,

(
∂2

∂r2 + 2

r

∂

∂r

)
Rnl(r)

r
= 1

r

d2

dr2 Rnl(r) (17)

and accordingly, the radial Schrödinger equation given by Eq. (15) can now be written
in the form

d2 Rnl(r)

dr2 + 2μ

h̄2

[
Enl − Vef f

]
Rnl (r) = 0. (18)

3.2 Approximate analytical solutions of the Deng–Fan molecular potential

In order to obtain the bound state solutions of l �= 0, we insert the potential in Eq. (1)
into Eq. (16), then the effective potential becomes:
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Vef f (r) = De

[
1 − be−ar

1 − e−ar

]2

+ l (l + 1) h̄2

2μr2 . (19)

Using the following new improved approximation scheme to deal with the centrifugal
term (Pekeris-type approximation scheme), near the minimum point r = re [7,11,26,
40]:

1

r2 = a2

[
d0 + e−ar

(
1 − e−ar

)2

]

= a2

[
d0 + 1

(ar)2
− 1

12
+ (ar)2

240
− (ar)4

6048
+ (ar)6

172800
+ 0

(
(ar)8

)]
(20)

where ar � 1 and the dimensionless parameter d0 = 1
12 by the above series expansion.

It has been shown that this approximation scheme is better than the Greene and Aldrich
[23] approximation scheme used by Dong and Gu [3], as pointed out by Zhang et al.
[7].

Substituting Eq. (20) into Eq. (18), we obtain the radial Schrödinger equation with
the Deng–Fan potential and the centrifugal barrier term as:

d2 Rnl (r)

dr2 + 2μ

h̄2

[
Enl − De

(
1 − be−ar

1 − e−ar

)2

− l (l + 1) h̄2a2

2μ

(
d0 + e−ar

(
1 − e−ar

)2

)]
Rnl = 0. (21)

Taking a transformation equation of the form s = e−ar , Eq. (21) reduces to

d2 Rnl(s)

ds2 + 1 − s

s (1 − s)

d Rnl(s)

ds
+ 1

s2 (1 − s)2

[
−

(
ε2

nl + (2 + b) β2b
)

s2

+
(

2
(
β2b + ε2

nl

)
− γ

)
s − ε2

nl

]
Rnl(s) = 0 (22)

where we have used the following dimensional parameters:

ε2 = 2μEnl

h̄2a2
, β2 = 2μDe

h̄2a2
, γ = l (l + 1) and − ε2

nl = ε2 − β2 − γ d0. (23)

In order to solve Eq. (22) by using the Nikiforov–Uvarov (N–U) method, we compare
it with Eq. (2) and obtain the following polynomials:

τ̄ (s) = 1 − s, σ (s) = s (1 − s) , σ 2 (s) = s2 (1 − s)2 ,

σ̄ (s) = −
(
ε2

nl + (2 + b) β2b
)

s2 +
(

2
(
β2b + ε2

nl

)
− γ

)
s − ε2

nl

= −As2 + Bs − C, (24)
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where

A = ε2
nl + (2 + b) β2b, B = 2

(
β2b + ε2

nl

)
− γ, C = ε2

nl . (25)

Substituting these polynomials into Eq. (9), we obtain the following four possible
solutions for π (s) as

π (s) = − s

2
± 1

2

[(√
(1 + 2l)2 + 4β2b2 + 2εnl

)
s − 2εnl

]
(26)

k± = 2β2b − l (l + 1)± εnl

√
(1 + 2l)2 + 4β2b2 . (27)

In an attempt of making the first derivative of τ(s) = τ̄ (s)+ 2π(s) negative, we need
to select the most suitable form of π (s) as

π (s) = − s

2
− 1

2

[(√
(1 + 2l)2 + 4β2b2 + 2εnl

)
s − 2εnl

]
;

k− = 2β2b − l (l + 1)− εnl

√
(1 + 2l)2 + 4β2b2. (28)

According to Eqs. (7) and (8), λ = λn gives energy equation as

Enl = De + l (l + 1) h̄2a2d0

2μ
− h̄2a2

2μ

⎡
⎣
(2+b)μDeb

h̄2a2

n + η
− n + η

2

⎤
⎦

2

;

β2 = 2μDe

h̄2a2
, η = 1

2

⎡
⎣1 +

√
(1 + 2l)2 + 8μDeb2

h̄2a2

⎤
⎦ , (29)

where n and l are the principal and orbital quantum numbers, respectively.
Since the polynomial solutions of the hypergeometric function y(s) depend on the

determination of the weight function ρ(s) which satisfies the differential equation in
Eq. (12). Thus, ρ(s) is obtained as:

ρ (s) = s2εnl (1 − s)2η−1 , (30)

where we have used

2η − 1 =
√
(1 + 2l)2 + 8μDeb

h̄2a2
(31)

Substituting Eq. (30) into the Rodrigue’s relation given in Eq. (11), we obtain

ynl (s) = Bns−2εnl (1 − s)−(2η−1) dn

dsn

[
sn+2εnl (1 − s)n+2η−1

]
, (32)
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where

εnl = (2 + b) β2b

2n + 1 +
√
(1 + 2l)2 + 4β2b2

− 2n + 1 +
√
(1 + 2l)2 + 4β2b2

4
(33)

and Bn is the normalization constant.
Equation (33) may be expressed in terms of Jacobi polynomials as Gradshteyn and

Ryzhik [48]:

ynl (s) ≡ P(2εnl ,2η−1)
n (s) , (34)

the Jacobi polynomial P(α,β)n is related to the hypergeometric functions by the relation

P(α,β)n (s) = �(n + 1 + α)

n!�(1 + α)
2 F1

(
−n, n + α + β + 1;α + 1; 1

2
(1 − s)

)
, (35)

solving for φ (s) by using π (s) and σ (s) in the expression given in Eq. (10), we have

φ (s) = sεnl (1 − s)η . (36)

Hence, using Eqs. (35) and (36) in relation in Eq. (3), we obtain the un-normalized
radial wave functions as:

Rnl (s) = Nnl
�(n + 2εnl + 1)

n!�(1 + 2εnl)
e−εnl ar (

1 − e−ar )η
2 F1

×
(

−n, n + 2 (εnl + η) ; 2εnl + 1; 1 − e−ar

2

)
(37)

where Nnl is the normalization constant which is obtained as:

Nnl = 1

Γ (2εnl + 1)

[
aεnl (n + εnl + η) Γ (n + 2εnl + 1) Γ (n + 2εnl + 2η)

2 (n + η) n!Γ (n + 2η)

]1/2

.

(38)

4 Applications

In order to know the contribution of the improved Pekeris-type approximation scheme
with the N–U method used and the accuracy of our results obtained in Sect. 3, we
compare our results with the results of Dong and Gu (functional method) [3], numerical
integration method obtained by using the MATHEMATICA program of Lucha and
Schöberl [53] (as reported by Dong and Gu (functional method) [3]) and Zhang et al.
(SUSY method) [7]. From Tables 1 and 2, our results (N–U method) and the results
of Zhang et al. (SUSY method) [7] are better than the results obtained by numerical
integration method (as reported by Dong and Gu [3]) for large values of l. In addition,
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Table 1 Energy eigenvalues Enl (eV ) for the Deng–Fan potential as a function of the parameter l for some
spectroscopic states for re = 0.40 and De = 15 (h̄ = µ = 1)

State l N–U
method

SUSY
method [7]

Numerical
method [3]

Functional
method [3]

2p 0.05 7.860804493 7.86080 7.8628 7.8606

0.10 7.953304454 7.95330 7.95537 7.95247

0.15 8.045099870 8.04510 8.04724 8.04322

0.20 8.136203772 8.13620 8.13842 8.13287

0.25 8.226629167 8.22663 8.22892 8.22142

0.30 8.316389030 8.31639 8.31874 8.30889

3p 0.05 10.99776305 10.9978 10.9998 10.9976

0.10 11.16256046 11.1626 11.1647 11.1617

0.15 11.32424872 11.3242 11.32647 11.3224

0.20 11.48283762 11.4828 11.48513 11.4795

0.25 11.63833667 11.6383 11.64068 11.6331

0.30 11.79075502 11.7908 9.67565 11.7833

3d 0.05 10.21598027 10.21598 10.21651 10.2154

0.10 10.35353947 10.35354 10.35409 10.351

0.15 10.48935439 10.48935 10.48992 10.4837

0.20 10.62346374 10.62346 10.62403 10.6135

0.25 10.75590641 10.75591 10.75645 10.7403

0.30 10.88672151 10.88672 10.88719 10.8642

4p 0.05 12.49760242 12.4976 12.4992 12.4974

0.10 12.69679604 12.69680 12.69851 12.696

0.15 12.88834813 12.88835 12.8901 12.8865

0.20 13.07224462 13.07224 13.07400 13.0689

0.25 13.24847044 13.24847 13.2501 13.2433

4d 0.05 12.09829027 12.09829 12.0989 12.0977

0.10 12.28500942 12.28501 12.2857 12.2825

0.15 12.46641937 12.46642 12.46715 12.4608

0.20 12.64256756 12.64257 12.64324 12.6326

4f 0.05 11.82078623 11.82079 11.8209 11.8195

0.10 11.99796121 11.99796 11.9981 11.993

0.15 12.17169661 12.17170 12.1718 12.1604

0.20 12.34207217 12.34207 12.3421 12.3221

5p 0.10 13.54214250 13.54214 13.5434 13.5413

0.20 13.92898633 13.92899 13.9301 13.9257

5d 0.10 13.30679690 13.30680 13.3075 13.3043

0.20 13.69266395 13.69266 13.6931 13.6827

5f 0.10 13.14759771 13.14760 13.1478 13.1426

0.20 13.53344225 13.53344 13.5333 13.5134

5g 0.10 13.03797622 13.03798 13.0379 13.0296

0.20 13.42711266 13.42711 13.42667 13.3938
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Table 1 continued

State l N–U
method

SUSY
method [7]

Numerical
method [3]

Functional
method [3]

6p 0.10 14.05208861 14.05209 14.0530 14.0513

6d 0.10 13.90704846 13.90705 13.9075 13.9045

6f 0.10 13.81118995 13.81119 13.8113 13.8062

6g 0.10 13.74661283 13.74661 13.7466 13.7383

Table 2 Energy eigenvalues Enl (eV ) for the Deng–Fan potential as a function of the parameter l for some
spectroscopic states for re = 0.80 and De = 15 (h̄ = µ = 1)

State l N–U
method

SUSY
method [7]

Numerical
method [3]

Functional
method [3]

2p 0.05 4.140887263 4.140887 4.14208 4.14068

0.10 4.219180128 4.219180 4.2204 4.21835

0.15 4.297393199 4.297393 4.2987 4.29552

0.20 4.375546508 4.375547 4.3769 4.37221

0.25 4.453659654 4.453660 4.4551 4.44845

0.30 4.531751791 4.531752 4.5332 4.52425

3p 0.05 7.532791561 7.532792 7.5350 7.53258

0.10 7.724764274 7.724764 7.7271 7.72393

0.15 7.915178655 7.915179 7.9177 7.9133

0.20 8.104040627 8.104041 8.1066 8.10071

0.25 8.291354169 8.291354 8.2841 8.28615

0.30 8.477121312 8.477121 8.4799 8.46962

3d 0.05 5.739751228 5.739751 5.7404 5.73913

0.10 5.845770281 5.845770 5.8465 5.84327

0.15 5.950678133 5.950678 5.9515 5.94505

0.20 6.054533598 6.054534 6.0553 6.04453

0.25 6.157395321 6.157395 6.1582 6.14177

0.30 6.259321745 6.259322 6.2601 6.23682

4p 0.05 9.613013087 9.613013 9.6156 9.6128

0.10 9.883523698 9.883524 9.8862 9.88269

0.15 10.14855572 10.14856 10.1514 10.1467

0.20 10.40805775 10.40806 10.4111 10.4047

0.25 10.66197388 10.66197 10.665 10.6568

4d 0.05 8.493343486 8.493344 8.4948 8.49272

0.10 8.707110984 8.707111 8.7087 8.70461

0.15 8.917807599 8.917808 8.9194 8.91218

0.20 9.125505093 9.125505 9.1272 9.11551

4f 0.05 7.434705812 7.434706 7.4351 7.43346

0.10 7.586418806 7.586419 7.5868 7.58142
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Table 2 continued

State l N–U
method

SUSY
method [7]

Numerical
method [3]

Functional
method [3]

0.15 7.735732273 7.735732 7.7361 7.72448

0.20 7.882757512 7.882758 7.8831 7.86276

5p 0.10 11.30207244 11.30207 11.3047 11.3012

0.20 11.91322375 11.91322 11.9161 11.9099

5d 0.10 10.52008608 10.52009 10.5219 10.5176

0.20 11.06937161 11.06937 11.0713 11.0594

5f 0.10 9.796658033 9.796658 9.7975 9.79166

0.20 10.27303707 10.27304 10.2738 10.253

5g 0.10 9.152223355 9.152223 9.1524 9.14389

0.20 9.552869479 9.552869 9.5528 9.51954

6p 0.10 12.27979921 12.27980 12.2822 12.279

6d 0.10 11.73643864 11.73644 11.7383 11.7339

6f 0.10 11.24481492 11.24481 11.2459 11.2398

6g 0.10 10.81533228 10.81533 10.8158 10.807

our results (N–U method) and the results of Zhang et al. (SUSY method) [7] are
better than the results of Dong and Gu [3], since their results are obtained by using
conventional approximation scheme to deal with the centrifugal term. Hence, the new
improved approximation scheme to deal with the centrifugal term in Eq. (20) is better
than the one proposed by Dong and Gu [3].

Furthermore, the approximate analytical solutions for some selected diatomic mole-
cules are obtained. In this work, some diatomic molecules have been selected for
the purposes which they serve in various aspect of chemical synthesis, nature of
bonding, temperature stability and electronic transport properties in chemical physics
[15,32,41,49,50]. Some of these selected diatomic molecules composed of the homo-
geneous diatomic molecules (H2); the heterogeneous diatomic molecules (HCl, LiH);
the neutral transition metal hydrides (ScH, TiH, VH, CrH); the transition-metal lithide
(CuLi); the transition-metal carbides (TiC, NiC); the transition-metal nitrite (ScN) and
the transition-metal fluoride (ScF).

The spectroscopic data in Table 3 are used to obtain approximate ro-vibrational
energy states for some of these selected diatomic molecules for the Deng–Fan potential,
the results are tabulated in Tables 4, 5, 6.

5 Conclusion

In the present study, we have obtained the approximate analytical solutions of the
Schrödinger equation for the Deng–Fan molecular potential by using the Nikiforov–
Uvarov (N–U) method. This is done by introducing a Pekeris-type approximation to
deal with the centrifugal term of the Schrödinger equation for the Deng–Fan molec-
ular potential. The approximate analytical energy eigenvalues and the corresponding
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Table 3 Spectroscopic data for some selected diatomic molecules

Molecules De(eV ) re(Å) a(Å−1) μ (a.m.u)

HCl 4.619061175 1.2746 1.8677 0.9801045

LiH 2.515283695 1.5956 1.1280 0.8801221

H2 4.7446 0.7416 1.9426 0.50391

ScH 2.25 1.776 1.41113 0.986040

ScN 4.56 1.768 1.50680 10.682771

TiH 2.05 1.781 1.32408 0.987371

VH 2.33 1.719 1.44370 0.988005

CrH 2.13 1.694 1.52179 0.988976

NiC 2.76 1.621 2.25297 9.974265

CuLi 1.74 2.310 1.00818 6.259494

TiC 2.66 1.790 1.52550 9.606079

ScF 5.85 1.794 1.46102 13.358942

where h̄c = 1973.29eV Å [15,19,20,32,41,49–52]

Table 4 The bound state energies Enl (eV ) for HCl, LiH and H2 molecules for different values of the
vibrational n and rotational l quantum numbers of the Deng–Fan potential

n l HCl LiH H2

0 0 0.201984174 0.103334650 0.349980221

0 1 0.204854248 0.105236729 0.364688765

1 0 0.590747827 0.302005955 0.996777053

1 1 0.593537612 0.303838653 1.010323238

2 0 0.960011044 0.490685861 1.580248366

2 1 0.962721591 0.492450759 1.592700793

2 2 0.968141645 0.495978997 1.617539648

3 0 1.310027865 0.669601019 2.104086156

3 1 1.312660203 0.671299648 2.115507769

3 2 1.317923855 0.674695388 2.138289195

3 3 1.325816775 0.679785205 2.172307398

4 0 1.641047243 0.838970564 2.571680443

4 1 1.643602379 0.840604402 2.582129083

4 2 1.648711644 0.843870601 2.602968445

4 3 1.656373023 0.848766203 2.634083222

4 4 1.666583499 0.855286782 2.675301759

5 0 1.953313156 0.999006401 2.986148433

5 1 1.955792078 1.00057688 2.995677323

5 2 1.960748932 1.003716397 3.014680784

5 3 1.968181734 1.008422072 3.043050669

5 4 1.978087513 1.014689589 3.080625975

5 5 1.990462308 1.022513206 3.127194276
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Table 5 The bound state energies Enl (eV ) for ScH, TiH, VH and CrH molecules for different values of
the vibrational n and rotational l quantum numbers of the Deng–Fan potential

n l ScH TiH VH CrH

0 0 0.104850694 0.095195135 0.109283701 0.109051761

0 1 0.106349671 0.096647888 0.110873673 0.110713465

1 0 0.306246538 0.277949104 0.319115401 0.317715462

1 1 0.307704129 0.279358078 0.320660504 0.319328938

2 0 0.496950687 0.450924416 0.517711754 0.514210716

2 1 0.498367397 0.452290234 0.519212554 0.515776561

2 2 0.501200316 0.455021255 0.522213593 0.518907656

3 0 0.677093198 0.614259487 0.705213873 0.698688309

3 1 0.678469522 0.615582758 0.706670923 0.700207111

3 2 0.681221677 0.618228694 0.709584473 0.703244131

3 3 0.685348677 0.622196086 0.713953418 0.707798199

4 0 0.846801673 0.768089723 0.881760121 0.871296119

4 1 0.848138097 0.769371041 0.883173966 0.872768456

4 2 0.850810460 0.771933083 0.886001113 0.875712554

4 3 0.854817791 0.775774658 0.890240476 0.880127261

4 4 0.860158632 0.780893985 0.895890425 0.886010849

5 0 1.006201313 0.912547598 1.047486184 1.032179179

5 1 1.007498315 0.913787546 1.048857357 1.033605616

5 2 1.010091841 0.916266858 1.051599167 1.036457924

5 3 1.013980933 0.919984364 1.055710546 1.040734966

5 4 1.019164157 0.924938312 1.061189889 1.046435042

5 5 1.025639693 0.931126367 1.068035065 1.053555885

Table 6 The bound state energies Enl (eV ) for CuLi, TiC, NiC, ScN and ScF molecules for different
values of the vibrational n and rotational l quantum numbers of the Deng–Fan potential

n l CuLi TiC NiC ScN ScF

0 0 0.026818307 0.039113293 0.055344362 0.048241243 0.047570217

1 0 0.026955324 0.039272617 0.055579192 0.048386343 0.047682126

1 1 0.079745219 0.116393424 0.164294062 0.143880175 0.142069247

2 0 0.079880854 0.116551564 0.164527691 0.144024459 0.142180660

2 1 0.131756662 0.192439939 0.270947523 0.238420357 0.235733223

2 2 0.131890919 0.192596892 0.271179952 0.238563831 0.235844142

3 0 0.132159429 0.192910789 0.271644807 0.238850775 0.236065981

3 1 0.182857099 0.267256594 0.375308427 0.331864375 0.328563726

3 2 0.182989988 0.267412364 0.375539658 0.332007039 0.328674152

3 3 0.183255759 0.267723901 0.376002118 0.332292365 0.328895002

4 0 0.183654398 0.268191197 0.376695804 0.332720351 0.329226276

4 1 0.233050973 0.340847133 0.477380444 0.424214801 0.420562331
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Table 6 continued

n l CuLi TiC NiC ScN ScF

4 2 0.233182495 0.341001723 0.477610482 0.424356658 0.420672264

4 3 0.233445541 0.341310904 0.478070549 0.424640373 0.420892131

4 4 0.233840092 0.341774668 0.478760649 0.425065934 0.421221926

5 0 0.234366131 0.342393002 0.479680772 0.425633343 0.421661649

5 1 0.282342675 0.413215272 0.577167239 0.515474202 0.511730608

5 2 0.282472844 0.413368688 0.577396081 0.515615254 0.511840049

5 3 0.282733177 0.413675522 0.577853763 0.515897355 0.512058932

5 4 0.283123662 0.414135763 0.578540282 0.516320503 0.512387253

5 5 0.283644273 0.414749401 0.579455631 0.516884691 0.512825013

normalized wave functions for arbitrary l state are obtained. For comparison sake,
the energy eigenvalues of this potential as a function of the parameter l for different
spectroscopic states are obtained as shown in Tables 1 and 2.

Also, we have obtained ro-vibrational energy states for some selected diatomic
molecules (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF) for this
molecular potential. For these selected diatomic molecules, the energy eigenvalues
increases as n and l increases as it can be seen in Tables 4, 5, 6. As we have observed,
the N–U method allows no constraint on the potential parameter, see Tables 1 and
2 values involved and it is easy to implement. The results obtained are sufficiently
accurate. Therefore, we have applied the present solutions to obtain the ro-vibrational
energies for some selected diatomic molecules for the Deng–Fan molecular potential
for various arbitrary values of rotational and vibrational quantum numbers.
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